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Introduction
Re-entrant corner flows are commonly found in polymer processing applications, for example in cross-slot and contraction flows. Here, we utilise matched
asymptotic expansions to provide a description of White–Metzner (WM) fluid flow around a re-entrant corner. The WM model here assumes no solvent
viscosity, with power-law variations in relaxation time and polymer viscosity. Compared to the Upper Convected Maxwell (UCM) model, WM shows
the same singularity and boundary layer structure, however layer thickness varies depending on the relative difference in the exponents.

Geometry
We consider steady, incompressible, planar flow
as below, with 1/2 ≤ α < 1.

θ = 0

θ = π/α

r

θ

(downstream)

(upstream)

No-slip and no-flux conditions are applied to
both walls.

Governing Equations
Re(u · ∇)u = −∇p+ ∇ · T ,

T + Wi γ̇q−1 ∇
T︸ ︷︷ ︸

elasticity

= 2γ̇n−1D︸ ︷︷ ︸
viscosity

.

Shear rate: γ̇ :=
√

2D : D.

Natural Stress Decomposition
Cartesian stress components fail to provide a
complete leading order description of the corner
flow. We instead write the conformation tensor
A := T + γ̇n−qI as

A = TuuuuT + Tuw

(
uwT + wuT

)
+ TwwwwT .

Asymptotic Structure
As r → 0, we obtain a symmetric three region structure around the re-entrant corner:

1. Region I: Outer Solution

θ = 0

O(ϵ)

O(δ)
I

II

θ = π/α

Close to corner (r ≪ 1) but away from the walls, the fluid behaves
elastically. The extra-stress is given by a stretching solution T ∼
Tuu(ψ)uuT , with a ‘potential flow’ solution for the streamfunction
ψ :

ψ ∼ C0

αm
rmα sinm(αθ), T = O

(
r2(α−1)

)
, Tuu,uw,ww ∼ di

(
ψ

C0

)mi

.

The powers m,mi are known through boundary layer matching; C0
and di are determined through solving the boundary layer equations.

u

y
∼ ψyy(x, 0)

x X

Y

y

2. Region II: Boundary Layers

The outer solution cannot capture viscometric behaviour near to the
walls. Scaling the WM equations with x = ϵX, y = δ(ϵ)Y shows
existence of viscous boundary layers near both walls of thickness

δ = ϵ2−α+ (q−n)(1−α)
n+q .

For q = n, boundary layers are identical to the UCM model. For
q ̸= n, the boundary layer is thicker for q < n, and vice versa.

3. Similarity Solution

The boundary layer PDEs in (ψ, Tuu, Tuw, Tww) can be converted to ODEs in (f, tuu, tuw, tww) via a
similarity solution in

χ = X−aY, a = n+ (3 − 2α)q
n+ q

.

By imposing upstream pressure and wall shear rate values, the upstream stresses — and thus C0
and di — can be determined via an initial value problem; these data can be used to solve for the
downstream flow via a boundary value problem.

Downstream Solution and Shear Rate Estimation
The boundary conditions mean near to the walls, f ∼ 1

2f2χ
2. By solving the similarity equations, we can estimate the downstream wall shear rate f2d.

We find that relative to UCM, shear thinning increases the downstream wall shear rate, and shear thickening decreases it.
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(a) n = 0.6 (shear thinning) (b) n = 1 (UCM — no shear thinning) (c) n = 1.4 (shear thickening)

Here, n = q, Wi = 1, α = 2/3, the upstream wall shear rate is f2u = −1 and the upstream pressure is p = x2(α−1).

Future Work
1. Verify asymptotic results via full numeri-

cal simulation.

2. Investigate stress singularities in similar
systems or models.
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